The need for continuous power supply and its reliability has increased rapidly over the years, especially in all those areas where uninterrupted power supply is a must. Modern systems are power dependent. Their complexity has increased as continuous information and communications are needed to control automated process, be in industries, commercial complexes, hospitals, hotels or even modern residences.
The need, as such, for independent stand by power system has therefore increased manifold. The power distribution, control, monitoring and protection of stand by power system needs to be integrated. Stand by generator systems, for example, are required to cater to :-

- Sensitive Loads are supplied by UPS systems. The period of non-availability of power, before the stand by supply takes over, is bridged by battery banks. Typical loads are computers, hospital equipments, micro processor controlled industrial machines etc.
- Critical Loads mostly involve stand by generator systems which supply power to lighting systems, air conditioning, elevators etc in Airports, Hotels and commercial complexes.
- Essential Loads also use stand by generator systems mostly in process industries as they relate to high restarting times or high down times.
Automatic transfer from main supply to stand by supply is vital for all the above kinds of loads.
In the event of power failure, the stand by power is usually expected to take over automatically. Electrical starting equipment, battery bank and diesel generator are required for the automatic operation.
The automatic transfer is achieved mostly by automatic mains failure systems. The process of onload transfer has to be monitored \& controlled for a smooth Changeover and within safety limits of all elements of the system. This is achieved by Automatic Transfer Switch (ATS).Range

Range

Current rating from 100A to 630A in three frame sizes in three pole and four pole execution.

Specification

Conforms to IEC:60947-1 and IEC:60947-6-1 / IS:13947-1.

Features

- High speed transfer
- Superior making \& breaking capacity
- Compact \& light weight design
- Positive indication through flag indicator
- Neutral point transfer
- Liberal terminals
- Phase barriers Range

Construction

The Switch comprises of upto four symmetrical poles coupled with the Main Operating Mechanism. The switching mechanism is quick make, quick break type. Load terminals are given on the Lower side but can also be provided on the upper side.

Contact Mechanism

The contact system is housed in a frame made of Polyester reinforced glass material. Each pole has two independent set of Moving contact assemblies for Main \& standby supply and one Fixed contact assembly for the common outgoing load terminals. The Moving assemblies are mechanically operated by Cams when rotated by the Main Operating Mechanism. Moving Contacts make on to Fixed Contacts under constant pressure with backup spring. Main Contacts are made of Silver-Tungsten to ensure anti-weld characteristics. The Arc Chute plates placed in the path of contact, efficiently quench the Arc and there by enhance the life of the contacts.

Main Operating Mechanism

The main mechanism independently actuates two sets of Cam linkages, which in turn operate the two independent moving contact assemblies.

The closing command is through a Solenoid Coil supplied with 220 V AC. The operating mechanism always responds by closing on the main supply side and not on to standby supply side, when both supplies are present.

The tripping coil, when energised, is used to bring the ATS to OFF / Neutral position.

Closing on to the standby supply is achieved through the selective coil. The energisation of selective coil, disengages the main mechanism and prevents closing on to the main supply. The
solenoid coil can then close the second set of moving contacts on to the standby supply.

The moving contact mechanism of the main supply and the standby supply are inherently mechanically interlocked through a double throw arrangement, which ensures that at no point of time two supplies are paralleled.

Cross Sectional View of Single Pole of ATS

1 Frame
$2 \quad$ Housing for Arc Chute
3 Operating Shaft for Contacts
Moving Contact
Fixed Contact
Main Supply - Incoming Terminals
Standby Supply - Incoming Terminals
Common outgoing - Load Terminals

1. Manual Operating Handle
2. Earthing Terminal
3. Name Plate
4. Trip Button
5. Selector (Source-lI)
6. On / Off Indicators (Source I \& II)
7. Main Supply Terminals
8. Arc Extinguishing Chambers
9. Auxilliary Switch (2 nos.)
10. Standby Supply Terminals
11. Control Circuit Terminal Block
12. Terminals For Load
13. Actuator For Closing Coil
14. ATS Controller Unit
15. Control Wiring
16. ATS Protection Unit (optional)
17. Online Float Charger cum UPS

HAVELLS

Operation (Automatic)

In the event of main supply being available, the ATS can be instantaneously switched $O N$, by the closing coil C , through terminals A_{1}, A_{2}, from its OFF / Neutral position.

If the $A T S$ is $O N$ at the standby supply position, then it is first tripped by the trip coil $T C$, through terminals $B T_{1}$ - $B T_{2}$. This ensures that the two sources of supply are not paralleled. A suitable external control circuit will ensure this, as shown in circuit diagram for Automatic Instantaneous Changeover mode.

The Auxiliary Switches AX or BX, disconnect the closing coil C , once the ATS is ON, thereby the power consumption of the coil C is zero, when the ATS is closed.

To switch the ATS to standby supply, the selective coil SC is first energised. Then the closing coil C is powered through limit swtiches LS and terminals B_{1}, B_{2}.

The Trip Coil TC, can be energised through $A T_{1}-A T_{2}$ or $B T_{1}-B T_{2}$ to switch off the main supply or standby supply.

Operation (II Emergency)

In an emergency, the ATS can be operated manually, but as an off-load switch only.
Close on to Main Supply
A manual handle rotates the operating shaft by about 45° in anticlockwise direction, to achieve closure, under off-load conditions.

Close on to Standby Supply
Closure on to standby supply side is achieved, when the "selective" mode is continously pressed and the manual handle rotates the operating shaft by about 45° in anticlockwise direction.

Trip
Tripping can be achieved manually by pressing momentarily through the "Trip Button".

Closing ATS manually to source-I
Switch to source-I (mains) by rotating the handle upwards though an angle (approximately 45°)

INSTALINE
Automatic Transfer Switch

Technical Information

Frame Size		TNFO1		TNFO2		TNFO3	
Rated Operational Current le	A	100	160	200	315	400	630
No. of Poles		3P / 4P	3P / 4P	3P / 4P	3P/4P	3P / 4P	3P / 4P
Rated Insulation Voltage Ui	V	1000	1000	1000	1000	1000	1000
Rated Operational Voltage Ue	V	440 V AC/125V DC		440 V AC / 125V DC		440 V AC / 125V DC	
Rated frequency	Hz	50	50	50	50	50	50
Class		PC	PC	PC	PC	PC	PC
Utilization Category		AC 31A	AC 31A	AC 31A	AC31A	AC 31A	AC31A
Dielectric Strength	KV	5	5	5	5	5	5
Rated Impulse withstand Voltage Uimp	KV	10	10	10	10	10	10
Rated making capacity at 440V ($\operatorname{Cos} \phi=0.80)$	A	1000	1600	2000	3150	4000	6300
Rated breaking capacity at 440V ($\operatorname{Cos} \phi=0.80)$	A	800	1280	1600	2520	3200	5040
Rated short time withstand current (1 sec)	KA ms	5	7	10	12	12	15
Fuse protected S/C withstand current	KA ms	80	80	80	80	80	80
Rated Short circuit making capacity	KA ms	12.5	17.5	25	30	30	37.5
Mech. Life (No. of ops.)		50,000	50,000	40,000	40,000	30,000	30,000
Elect. Life (No. of ops.)		15,000	15,000	12,000	12,000	10,000	10,000
Switching frequency (ops. per Hr)		120	120	120	120	120	120
Terminal Position		Front	Front	Front	Front	Front	Front
Terminal Capacity - Cu (cable)	mm^{2}	35	70	95	185	240	---
Al (cable)	mm^{2}	50	95	150	240	300	---
Busbar	mm	---	---	---	---	$40 \times 5 \times 2$	$40 \times 8 \times 2$
Weight 3P Kg		8.3	8.7	10.5	11.0	18.0	19.5
4 P Kg		9.3	9.7	11.5	12.0	21.0	22.5
Mounting		Vertical	Vertical	Vertical	Vertical	Vertical	Vertical
Coil							
Operating Voltage	V	$200 / 220$	200/220	200/220	$200 / 220$	200 / 220	$200 / 220$
Operating Current	A						
Main Coil 3P / 4P		3.0 /3.5	3.0 /3.5	4.0/4.5	4.0/4.5	8.0/10.5	8.0/10.5
Trip Coil		0.5	0.5	0.5	0.5	0.7	0.7
Operating Time	(ms)						
Main Power Source Make		55	55	55	55	60	60
Break		20	20	20	20	25	25
Standby Power Source Make		80	80	80	80	90	90
Break		20	20	20	20	25	25
Changeover time		(Using Controller Mode)					
Changeover time		$\begin{aligned} & \min _{\max } \end{aligned}$			$\begin{gathered} 0.5 \mathrm{~m} \mathrm{sec} \\ 60 \mathrm{sec} \\ \hline \end{gathered}$		

[^0]
Wiring Diagram (Controller to ATS)

INSTMLINE

Automatic Transfer Switch

Utilization Scope

Auto Transfer Switch is a self-acting equipment containing the transfer switching devices and other necessary devices for monitoring supply circuits and for transferring one or more load circuits from one supply to another.

The operating sequence of ATS consists of an automatic transfer of a load from the normal supply to an alternate supply in the event of a monitored supply deviation and automatically returning the load to the normal supply when quality of mains supply is restored. The transfer is with a predetermined time delay and includes an interim off position.

In case of both the normal and the alternate supplies being present, the ATS shall assume the normal supply position, which is termed as 'preferred supply'.

The various utilization categories show the most popular applications of Auto Transfer Switch, as per IEC-60947-6-1.

Utilization Scope

Nature of current	Uilization Category		Typical applications
	Frequent Operations	Infrequent operations	
	AC-31A AC-33A	AC-31B AC-33B	Non-inductive or slightly inductive loads Motor loads or mixed loads including motors, resistive loads and up to 30\%
Alternating Current	$\begin{aligned} & A C-35 A \\ & A C-36 A \\ & D C-31 A \end{aligned}$	$\begin{aligned} & A C-35 B \\ & A C-36 B \\ & D C-31 B \end{aligned}$	incandescent lamp loads Electric discharge lamp loads Incandescent loads Resistive loads
Direct Current	DC-33A DC-36A	DC-33B DC-36B	Motor loads or mixed loads including motors Incandescent lamp load

Three Pole - Basic Unit

Current Rating (A)	Cat. No.	Cat. No.
OPEN EXECUTION	STANDARD	WITH PRIMARY
	MODEL	SIDE PROTECTION
100	\|HYTSA0100	\|HY\#PD0100
160	\|HYTSA0160	\|HY\#PD0160
200	\|HYTSA0200	1HY\#PD0200
315	1HYTSA0315	\|HY\#PD0315
400	\|HYTSA0400	1HY\#PD0400
630	\|HYTSA0630	\|HY\#PD0630
IN ENCLOSURE		
100	\|HYTSAE100	\|HY\#PDE100
160	\|HYTSAE160	\|HY\#PDE160
200	\|HYTSAE200	\|HY\#PDE200
315	1HYTSAE315	IHY\#PDE315
400	\|HYTSAE400	1HY\#PDE400
630	\|HYTSAE630	\|HY\#PDE630

Four Pole - Basic Unit

100	\|HYFSA0100	\|HY\#PD0100
160	\|HYFSA0160	1HY\#PD0160
200	\|HYFSA0200	\|HY\#PD0200
315	\|HYFSA0315	\|HY\#PD0315
400	\|HYFSA0400	\|HY\#PD0400
630	\|HYFSA0630	\|HY\#PD0630
IN ENCLOSURE		
100	\|HYFSAE100	\|HY\#PDE100
160	\|HYFSAE160	\|HY\#PDE160
200	\|HYFSAE200	1HY\#PDE200
315	\|HYFSAE315	\|HY\#PDE315
400	\|HYFSAE400	\|HY\#PDE400
630	\|HYFSAE630	\|HY\#PDE630

Current Rating (A)	Cat. No.	Cat. No.
	STANDARD	WITH PRIMARY
OPEN EXECUTION	MODEL	SIDE PROTECTION

Note : Primary side protections include single phasing, over voltage, under voltage and phase reversal. While the trip coil operates using 220V AC available from either of the electrical sources, the protection unit requires 12 DC battery input for its functioning. The same needs to be made available from an uninterrupted source such as external battery being used for self start generator set.

Frame Size	Current Rating (A)	No. of	Over All Dimensions			Switch Mounting			Connection Terminals								Terminal Bolt Size	Weight
		Poles	A	B	C	J	K	L	P	R	S	T	V	W	Y	Y 1		
1	100	3P	257	241	122	201	132	\$9	38	15	30	4	29	29	40	90	M8x30MM	8.3 Kg
	100	4 P	295	241	122	201	170	$\phi 9$	38	15	30	4	29	29	40	90	M8x30MM	9.3 Kg
1	160	3 P	257	241	122	201	132	$\phi 9$	38	15	30	4	29	29	40	90	M8x30MM	8.7 Kg
	160	4 P	295	241	122	201	170	$\phi 9$	38	15	30	4	29	29	40	90	M8x30MM	9.7 Kg
2	200	3 P	290	253	122	213	167	$\phi 9$	48	30	30	5	34	34	40	90	M8x30MM	10.5 Kg
	200	4P	338	253	122	213	216	\$9	48	30	30	5	34	34	40	90	M8x30MM	11.5 Kg
2	315	3 P	290	253	122	213	167	$\phi 9$	48	30	30	5	34	34	40	90	M8x30MM	11.0 Kg
	315	4 P	338	253	122	213	216	\$9	48	30	30	5	34	34	40	90	M8x30MM	12.0 Kg
3	400	3 P	340	337	144	290	218	\$10	60	40	40	5	42	34	38	110	M10x40MM	19.5 Kg
	400	4 P	400	337	144	290	278	\$10	60	40	40	5	42	34	38	110	M10x40MM	21.0Kg
3	630	3P	340	337	144	290	218	\$10	60	44	40	7	42	34	38	110	M10x40MM	21.0 Kg
	630	4P	400	337	144	290	278	\$10	60	44	40	7	42	34	38	110	M10x40MM	22.5 Kg

Dimensions (in mm) - in Enclosure

Rating	A	B	C	D	E	F	G	H
100A-315A	550	450	240	$\phi 25.4$	322	60	503	510
400A-630A	550	520	236	$\phi 25.4$	332	65	503	580

[^0]: 3 P - Three Pole
 4 P - Four Pole

